IDENTIFICATION OF KAPPA-CASEIN GENE VARIANTS OF INTEREST IN DAIRY PRODUCTION IN PANAMANIAN BREEDS
Abstract
This study characterizes kappa-casein (CSN3) gene variants in Guaymí and Guabalá cattle breeds, crucial for the dairy industry due to their impact on milk quality and cheese production. The goal was to identify CSN3 genetic variations and their potential to enhance milk yield in these breeds. DNA from 34 samples was analyzed through 12 polymorphic markers using the Affymetrix Array platform. The study identified five polymorphic variants in both breeds, with notable allele frequency differences, indicating distinct selective pressures in each population. SNPs rs450402006 and rs43703015 showed allele frequencies consistent with prior studies in other breeds, indicating genetic conservation patterns and potential for genetic improvement programs focused on milk production.
Downloads
References
Alexander, L. J., Stewart, A. F., MacKinlay, A. G., Kapelinskaya, T. V., Tkach, T. M., & Gorodetsky, S. I. (1988). Isolation and characterization of the bovine kappa-casein gene. Eur. J. Biochem, 178(2), 395–401. https://doi.org/10.1111/j.1432-1033.1988.tb14463.x
Alim, M. A., Dong, T., Xie, Y., Wu, X. P., Zhang, Y., Zhang, S., & Sun, D. X. (2014). Effect of polymorphisms in the CSN3 (κ-casein) gene on milk production traits in Chinese Holstein cattle. Mol. Biol. Rep., 41(11), 7585-7593. https://doi.org/10.1007/s11033-014-3648-x
Amalfitano, N., Mota, L., Rosa, G., Cecchinato, A., & Bittante, G. (2022). Role of CSN2, CSN3, and BLG genes and the polygenic background in the cattle milk protein profile. J. Dairy Sci. 105, 6001-6020. https://doi.org/10.3168/jds.2021-21421
Asmarasari, S., Sumantri, C., Gunawan, A., Taufik, E., Anggraeni, A., Hapsari, A., & Dewantoro, B. (2021). Kappa casein (CSN3) gene polymorphism and its effect on cumulative milk yields of Holstein Friesian dairy cattle. IOP Conf. Ser. Earth Environ. Sci., 902 012047. https://doi.org/10.1088/1755-1315/902/1/012047
Bonfatti, V., Di Martino, G., Cecchinato, A., Degano, L, & Carnier, P. (2010). Effects of beta-kappa-casein (CSN2-CSN3) haplotypes, beta-lactoglobulin (BLG) genotypes, and detailed protein composition on coagulation properties of individual milk of Simmental cows. J. Dairy Sci., 93(8), 3809-3817. https://doi.org/10.3168/jds.2009-2779
Bugeac, T., Bâlteanu, V. A., & Creangă, Ș. (2013). Kappa-Casein genetic variants and their relationships with milk production and quality in Montbéliarde dairy cows. Bull Univ Agric Sci Vet Med Cluj-Napoca, Anim Sci Biotechnol, 70(1), 193-194. https://www.academia.edu/6847250/Kappa_Casein_Genetic_Variants_and_their_Relationships_with_Milk_Production_and_Quality_in_Montb%C3%A9liarde_Dairy_Cows
Caroli, A. M., Chessa, S., & Erhardt, G. J. (2009). Invited review: Milk protein polymorphisms in cattle: effect on animal breeding and human nutrition. J Dairy Sci, 92(11), 5335-5352. https://doi.org/10.3168/jds.2009-2461
Cezard, T., Cunningham, F., Hunt, S. E., Koylass, B., Kumar, N., Saunders, G., Shen, A., Silva, A. F., Tsukanov, K., Venkataraman, S., Flicek, P., Parkinson, H., & Keane, T. M. (2022). The European Variation Archive: a FAIR resource of genomic variation for all species. Nucleic Acids Res, 50(D1), D1216-D1220. https://doi.org/10.1093/nar/gkab960
Damiani, G., Ferretti, L., Rognoni, G., & Sgaramella, V. (1990). Restriction fragment length polymorphism analysis of the κ‐casein locus in cattle. Animal Genetics, 21(2), 107-114. DOI:10.1111/j.1365-2052.1990.tb03214.x
Elsik, C. G., Unni, D. R., Diesh, C. M., Tayal, A., Emery, M. L., Nguyen, H. N., & Hagen, D. E. (2016). Bovine Genome Database: new tools for gleaning function from the Bos taurus genome. Nucleic Acids Research, 44(D1), D834-D839. https://doi.org/10.1093/nar/gkv1077
Farhadian, M., Rafat, S. A., Mayack, C., & Bohlouli, M. (2022). Intra- and interspecies RNA-Seq based variants in the lactation process of ruminants. Animals, 12(24), 3592. https://doi.org/10.3390/ani12243592
Farrell Jr., H. M., Jimenez-Flores, R., Bleck, G. T., Brown, E. M., Butler, J. E., Creamer, L. K., Hicks, C. L., Hollar, C. M., Ng-Kwai-Hang, K. F., & Swaisgood, H. E. (2004). Nomenclature of the proteins of cows' milk--sixth revision. J. Dairy Sci., 87(6), 1641-1674. https://doi.org/10.3168/jds.S0022-0302(04)73319-6
Fontanesi, L., Calò, D. G., Galimberti, G., Negrini, R., Marino, R., Nardone, A., Ajmone-Marsan, P., & Russo, V. (2014). Candidate gene association study for nine economically important traits in Italian Holstein cattle. Anim. Genet., 45(4), 576-580. https://doi.org/10.1111/age.12164
Howe, K. L., Achuthan, P., Allen, J., Allen, J., Alvarez-Jarreta, J., & Amode, M. R. (2021). Ensembl 2021. Nucleic Acids Res, 49(D1), D884-D891. https://doi.org/10.1093/nar/gkaa942
Hu, Z. L., Park, C. A., & Reecy, J. M. (2022). Bringing the Animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services. Nucleic Acids Res, 50(D1), D956-D961. https://doi.org/10.1093/nar/gkab1116
Kovalchuk, S., Tagmazyan, A., & Klimov, E. (2019) A novel test system for genotyping rs43703016 single-nucleotide substitutions in the bovine CSN3 gene. Annu Res Rev Biol, 32(4). https://doi.org/10.9734/arrb/2019/v32i430090
Kruchinin, A. G., Illarionova, E. E., Galstyan, A. G., Turovskaya, S. N., Bigaeva, A. V., Bolshakova, E. I., & Strizhko, M. N. (2023). Effect of CSN3 gene polymorphism on the formation of milk gels induced by physical, chemical, and biotechnological factors. Foods, 12(9), 1767. https://doi.org/10.3390/foods12091767
Ladyka, V. I., Sklyarenko, Y. I., & Pavlenko, Y. M. (2022). Formation of economically useful traits in cows of Ukrainian brown dairy breed of different genotypes by kappa-casein. Animal Breeding and Genetics, 63, 161-168. https://doi.org/10.31073/abg.63.15
Lavon, Y., Weller, J. I., Zeron, Y., & Ezra, E. (2024). Estimating the effect of the kappa casein genotype on milk coagulation properties in Israeli Holstein cows. Animals, 14(1), 54. https://doi.org/10.3390/ani14010054
Lewerentz, F., Vanhala, T. K., Johansen, L. B., Paulsson, M., Glantz, M., & de Koning, D. J. (2024). Re-sequencing of the casein genes in Swedish Red cattle giving milk with diverse protein profiles and extreme rennet coagulation properties. JDS Commun, 5(4), 299-304. https://doi.org/10.3168/jdsc.2023-0412
Lischer, H. E. L., & Excoffier, L. (2012). PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics, 28(2), 298-299. https://doi.org/10.1093/bioinformatics/btr642
Mahmoudi, P., Rostamzadeh, J., Rashidi, A., Zergani, E., & Razmkabir, M. (2020). A meta-analysis on association between CSN3 gene variants and milk yield and composition in cattle. Anim. Genet., 51(3), 369-381. https://doi.org/10.1111/age.12922
Meier, S., Korkuć, P., Arends, D., & Brockmann, G. A. (2019). DNA sequence variants and protein haplotypes of casein genes in German Black Pied Cattle (DSN). Front. Genet., 10,1129. https://doi.org/10.3389/fgene.2019.01129
Pauciullo, A., Gaspa, G., Zhang, Y., Liu, Q., & Cosenza, G. (2024). CSN1S1, CSN3 and LPL: Three validated gene polymorphisms useful for more sustainable dairy production in the Mediterranean River Buffalo. Animals, 14(10), 1414. https://doi.org/10.3390/ani14101414
Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537–2539. http://bioinformatics.oxfordjournals.org/content/28/19/2537
Rachagani, S., & Gupta, I. D. (2008). Bovine kappa-casein gene polymorphism and its association with milk production traits. Genet. Mol. Biol., 31 (4), 893-897. https://doi.org/10.1590/S1415-47572008005000001
Raschia, M. A., Nani, J. P., Maizon, D. O., Beribe, M. J., Amadio, A. F., & Poli, M. A. (2018). Single nucleotide polymorphisms in candidate genes associated with milk yield in Argentinean Holstein and Holstein x Jersey cows. J Anim Sci Technol, 60(31). https://doi.org/10.1186/s40781-018-0189-1
Robinson, J., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E., Getz, G., & Mesirov, J. P. (2011). Integrative Genomics Viewer. Nat Biotechnol, 29, 24-26. https://doi.org/10.1038/nbt.1754
Schopen, G. C., Visker, M. H., Koks, P. D., Mullaart, E., van Arendonk, J. A., & Bovenhuis, H. (2011). Whole-genome association study for milk protein composition in dairy cattle. J. Dairy Sci., 94(6), 3148-3158. https://doi.org/10.3168/jds.2010-4030
Tiplady K. M., Lopdell, T. J., Reynolds, E., Sherlock, R. G., Keehan, M., Johnson, T. JJ., Pryce, J. E., Davis, S. R., Spelman, R. J., Harris, B. L., Garrick, D. J., & Littlejohn, M. D. (2021). Sequence-based genome-wide association study of individual milk mid-infrared wavenumbers in mixed-breed dairy cattle. Genet Sel Evol, 53, 62. https://doi.org/10.1186/s12711-021-00648-9
Younis, A., Hussain, I., Ahmad, S. N., Shah, A., Inayat, I., Kanwal, M. A., Suleman S, Kamran, M. A., Matloob, S., & Ahmad, K. R. (2024). Validation of Bos taurus SNPs for milk productivity of Sahiwal breed (Bos indicus), Pakistan. Animals, 14(9), 1306. https://doi.org/10.3390/ani14091306
Zambrano-Burbano, G. L., Eraso-Cabrera, Y. M., Solarte-Portilla, C. E., & Rosero-Galindo, C. Y. (2012). Relationship between kappa casein genes (CSN3) and industrial yield in Holstein cows in Nariño-Colombia. InTechOpen. http://dx.doi.org/10.5772/47818
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.
