EVALUATION AND SELECTION OF MAIZE VARIETIES FOR FAMILIAR FARMING SYSTEMS, PANAMA 2017-2019

  • Román Gordón-Mendoza Agricultural Research Institute of Panama.
  • Jorge E. Franco-Barrera Agricultural Research Institute of Panama.
  • Jorge I. Núñez-Cano Agricultural Research Institute of Panama.
  • Ana E. Sáez-Cigarruista Agricultural Research Institute of Panama.
  • Francisco P. Ramos-Manzané Agricultural Research Institute of Panama.
  • Jorge E. Jaén-Villarreal Agricultural Research Institute of Panama.
  • Félix M. San Vicente-García International Center for the Improvement of Maize and Wheat (CIMMYT).
Keywords: Stability, Biplot GGE-SReg, Reliability normalized response, QPM, normal grain.

Abstract

The objective of this study was to evaluate the adaptability and stability of high-quality protein maize (QPM) yellow maize varieties, planted across thirty locations in Panama. They were planted in collaborating farmers’ fields and in the IDIAP Experimental Station of El Ejido during three years (2017-2019). The first year, 12 varieties were evaluated, then they were reduced to 10, and finally, in 2019, the six best varieties were evaluated. It was used The Alpha Lattice experimental design with three repetitions, which varied through years. A combined analysis of variance type REML was calculated to the data and the means were separated using the Minimum Significant Difference. The analysis of variance per year and combined through years showed highly significant differences between the varieties evaluated for grain yield and other agronomic traits. The analysis showed that, by reducing the number of varieties, the variance between genotypes decreased, while the variance between environments increased. In the second year of the study, the QPM variety S16LTYQHGAB05 was selected as the best among these genotypes. After three years, the control IDIAP-MV-1102 had a yield of 5,49 t·ha-1, and it was surpassed by more than 15% by the synthetic S10TLYNGSHGAB01 with a yield of 6,39 t·ha-1. The Biplot GGE-SReg analysis identified the latter as the most stable across locations. The analysis of the reliability of the normalized response indicated that in eight out of ten locations the S10TLYNGSHGAB01 outperformed the national control genotype. Registration of the two varieties is recommended for farmers’ use in the Republic of Panama.

Downloads

Download data is not yet available.

References

Camargo-Buitrago, I., R. Gordón-Mendoza, y E.I. Quirós-McIntire. 2017. La repetitividad como estimador de la precisión experimental en el análisis de experimentos. Agronomía Mesoamericana 28(1):159-169. http://dx.doi.org/10.15517/am.v28i1.24239.

Camargo, I., E.I. Quirós y V.M. Camargo. 2014. Selección de nuevos genotipos de arroz basados en la probabilidad de superar al testigo. Agronomía. Mesoamericana 25(1):63-71. https://www.redalyc.org/articulo.oa?id=43730495007 (consultado 14 abr. 2020).

Camargo, I., R. Gordón y M.R. Fuentes. 2003. Estabilidad y confiabilidad de los nuevos híbridos de maíz en comparación al testigo regional HB-83, 1998-200. Agronomía Mesoamericana 14(2)129-134. https://www.redalyc.org/pdf/437/43714201.pdf

CIMMYT (Centro Internacional de Mejoramiento de Maíz y Trigo). 1995. Manejo de los ensayos e informe de los datos para el Programa de Ensayos Internacionales de Maíz del CIMMYT. México, D.F. 20p.

Córdova, H.S., y H.J. Barreto, J. Crossa. 1993. Impacto del desarrollo de híbridos en Centro América: confiabilidad de las ganancias en rendimiento sobre el genotipo H5 y consideraciones para selección de testigos regionales. En: Síntesis de resultados Experimentales del PRM. 4:3-10. https://repository.cimmyt.org/xmlui/bitstream/handle/10883/3636/67845.pdf (consultado 14 ago. 2020).

Cornelius, P.L., and J. Crossa. 1999. Prediction assessment of shrinkage estimators of multiplicative model for multi environment cultivar trials. Crop Science. 39:998-1009. DOI: https://doi.org/10.2135/cropsci1999.0011183X003900040007x

Cornelius, P.L., J. Crossa, and M.S. Seyedsadr. 1996. Statistical test and estimators of multiplicative models for genotype-by-environment interaction. En: Kang, M.S. y Gauch, H.G. (eds). Genotype-by-environment interaction. Boca Ratón, FL., CRC Press. 199-234.

Crossa, J., P.N. Fox, W.H. Pfeiffer, S. Rajaram, and H.G. Gauch, Jr. 1991. AMMI adjustment for statistical analysis of an international wheat yield trial. Theoretical and Applied Genetics. 81(1):27-37. https://doi.org/10.1007/BF00226108

Eberhart, S.A., and W.A. Russell. 1966. Stability parameters for comparing varieties. Crop Science. 6:36-40. https://doi.org/10.2135/cropsci1966.0011183X000600010011x

Eskridge, K.M., O.S. Smith, and P.F. Byrne. 1993. Comparing test cultivars using reliability functions of test check differences from on farm trials. Theoretical and Applied Genetics. 87:60-64.

Eskridge, K.M., and R.F. Mumm. 1992. Choosing plant cultivars based on the probability of outperforming a check. Theoretical and Applied Genetics. 84:494-500.

Gordón-Mendoza, R., J.E. Franco, J.I. Núñez, A.E. Sáez, J.E. Jaén., F.P. Ramos y A.E. Ávila. 2019. Evaluación de la adaptabilidad de híbridos de maíz a las condiciones agroclimáticas de la Región de Azuero, Panamá, 2017. Visión Antataura 3(2):15-32.

Gordón-Mendoza, R., J. Franco Barrera, J. Núñez Cano, J. Jaén Villarreal, A. Sáez Cigarruista, F. Ramos Manzané y A. Ávila Guevara. 2017. Variedades de maíz en la Región de Azuero, Panamá, 2017. Ciencia Agropecuaria 28:117-131.

Gordón-Mendoza, R., y I. Camargo-Buitrago. 2015. Selección de estadísticos para la estimación de la precisión experimental en ensayos de maíz. Agronomía Mesoamericana 26(1) 55:63. DOI: 10.15517/am.v26i1.16920

Gordón, R. 2009. Manejo Integral del cultivo de Maíz. Folleto Técnico. IDIAP. 20 pág.

Johnson, D.E. 2000. Métodos multivariados aplicados al análisis de datos. International Thompson Editors. 566 p.

Kogo, B.K., L. Kumar, R. Koech, and P. Langat. 2019. Modelling Impacts of climate change on maize (Zea mays L.) growth and productivity: A review of models, outputs and limitations. Journal of Geoscience and Environment Protection, 7:76-95. DOI: 10.4236/gep.2019.78006

Ruane, A.C., C.L. DeWayne, R.M. Horton, R. Gordón, R. McCollum, D. Brown, B. Killough, R. Goldberg, A.P. Greeley, and C. Rosenzweig. 2013. Climate change impact uncertainties for maize in Panama: Farm information, climate projections, and yield sensitivities. Agricultural and Forest Meteorology. 170:132-145. DOI: http://dx.doi.org/10.1016/j.agrformet.2011.10.015

Samonte, S.O.PB., L.T. Wilson, A.M. McClung, and J.C. Mendley. 2005. Targeting cultivars onto rice growing environments using AMMI and SREG GGE Biplot analyses. Crop Science. 45:2414-24124.

Srivastava, A.K., C.M. Mboh, G. Zhao, T. Gaiser, and F. Ewert. 2018. Climate change impact under alternate realizations of climate scenarios on maize yield and biomass in Ghana. Agricultural Systems 159:157-174. DOI: http://dx.doi.org/10.1016/j.agsy.2017.03.011

Vargas, M., E. Combs, G. Alvarado, G. Atlin, K. Mathews, and J. Crossa. 2013. META: A suite of SAS Programs to analyze Multi environment breeding trials. Agronomy Journal. 105:11-19.

Yan, W., M.S. Kang, B. Ma, S. Woods, and P.L. Cornelius. 2007. GGE Biplot vs. AMMI analysis of genotype-by-environment data. Crop Science 47:641-653. DOI: https://doi.org/10.2135/cropsci2006.06.0374

Yan, W., and N.A. Tinker. 2006. Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science. 86: 623-645. DOI: https://doi.org/10.4141/P05-169

Yan, W., and M.S. Kang. 2003. GGE Biplot Analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Ratón, FL. 271 p.

Yan, W., and I. Rajcan. 2002. Biplot Analysis of test sites and trait relations of soybean in Ontario. Crop Science 42:11-20. DOI: https://doi.org/10.2135/cropsci2002.1100

Yan, W., L.A. Hunt, Q. Sheng and Z. Szlavnics. 2000. Cultivar Evaluation and Mega Environment Investigation based on the GGE Biplot. Crop Science. 40:597-605. DOI: https://doi.org/10.2135/cropsci2000.403597x

Published
2020-12-08
How to Cite
Gordón-Mendoza, R., Franco-Barrera, J., Núñez-Cano, J., Sáez-Cigarruista, A., Ramos-Manzané, F., Jaén-Villarreal, J., & San Vicente-García, F. (2020). EVALUATION AND SELECTION OF MAIZE VARIETIES FOR FAMILIAR FARMING SYSTEMS, PANAMA 2017-2019. Ciencia Agropecuaria, (31), 99-126. Retrieved from http://www.revistacienciaagropecuaria.ac.pa/index.php/ciencia-agropecuaria/article/view/303
Section
Artículos

Most read articles by the same author(s)